Quantum computing

- climbing Mount Entanglement

Mark Saffman

WISCONSIN
 UNIVERATY OE wISCONSIN-MADISO.

WISCONSIN QUANTUM

 INSTITUTEQuantum Science and Engineering at UW-Madison
wqi.wisc.edu

ColdQuanta

Classical and quantum mechanics

Macroscopic everyday phenomena are well described by classical physics.

At the microscopic level classical physics no longer works well.

Quantum mechanics takes over.

What is the difference between classical and quantum mechanics?

Quantum mechanics gives up on certainty and describes the world with amplitudes and probabilities.

Quantum uncertainty

Classical particles follow a path.
If we know $x\left(t_{\text {init }}\right)$, and $p\left(t_{\text {init }}\right)=m v\left(t_{\text {init }}\right)$

we can use Newton's laws of motion to calculate
$x(t)$ and $p(t)=m v(t)$ for all $t>t_{\text {init }}$.

The motion is deterministic.

In quantum mechanics it is in principle NOT possible to know $x(t)$ AND $p(t)$ simultaneously.

Heisenberg uncertainty principle

Two slit experiment

Two slit experiment

With classical particles:

Two slit experiment

With classical particles:

Two slit experiment

With classical particles:

Two slit experiment

With quantum particles:

$?$

Two slit experiment

With quantum particles:

Two slit experiment

The experiment has been done.

Proceedings of the Cambridge Philosophical Society
Interference fringes with feeble light. By G. I. Taylor, B.A., Trinity College. (Communicated by Professor Sir J. J. Thomson, F.R.S.)
[Read 25 January 1909.]

The phenomena of ionisation by light and by Röntgen rays have led to a theory according to which energy is distributed uncvenly over the wave-front (J. J. Thomson, Proc. Camb. Phil, Soc. xIv. p. 417, 1907). There are regions of maximum energy widely separated by large undisturbed arcas. When the intensity of light is reduced these regions become more widely separated, bat the amount of energy in any one of them does not change; that is, they are indivisible units
So far all the evidence brought forward in support of the theory has been of an indirect nature; for all ordinary optical phenomena are averugo effects, and are therefore incapable of diferentiating between the usual clectromagnetio theory and the however suggested that if the intensity of light in s diffraction pattern were so greatly reduced that only a few of these indivisible pats of energy should copur a Howsen zone at once the ondinary phenomena of diffrction would be modified Photographs were saken of the shadow of a needle, the souree of light being a narrow slit placed in front of a gas flame. The intensity of the light was reduced by means of sraoked glass screens.

Before making any exposures it was necessary to find out what proportion of the light was cut off by these screens. A plate was then shaded by the various screens that were to be used, and other plates of the same kind were exposed till they came out as black plates of the same kind were exposed till they came out as black exposure necessary to produce this result were taken as inversely exposare necessary to produce this result were taken as inversely truth of this assumption sbewed it to be true if the light was not very feeble.
Five diffruction photographs were then taken, the first with
direct light aud the others with the variogs screens inserted between the gas flame and the slit. The time of exposure for the first photograph was obtained by trial, a ecrtain standard of blackness being attained by the plate when fully developed. The
remaining times of exposure were taken from the first in the inverse ratio of the corresponding intensities. The longest time was 2000 hours or about 3 months. In no case was there any diminution in the sharpness of the pattern although the plates did not all reach the standard blackness of the first photograph.

In order to get some idea of the energy of the light falling on the plates in these experiments a plate of the same kind was exposed at a distance of two metres from a standard candle til complete development brought it up to the standard of blackness. Ten seconds sufficed for this, Δ simple calculation will shew that the amount of energy falling on the plate during the longest exposure was the same as that due to a standard candle burning at a distance slightly exceeding a mile. Taking the value given by Drude for the energy in the visible part of the spectrum of a standard candle, the amount of energy falling on 1 square centimetre of the plate is 5×10^{-6} ergs per sec. and the amount of energy per cubic centimetre of this radiation is 1.6×10^{-16} ergs.

According to Sir J. J. Thomson this value sets an upper limit to the amount of energy contained in one of the indivisible units mentioned above.

Two slit interference with light
interference with light waves

interference is seen even when only one photon at a time passes the slits

G.I. Taylor 1909

Quantum Spatial Superposition with Molecules

Interference fringes are observed.
Apparently each molecule propagates through both slits.

Quantum superposition of matter!

Nature Nanotech. 7, 297 (2012)

Two slit experiment

Experiment confirms interference.
How does the particle go through both slits?

Quantum data

Not only can particles be in two places at once they can be used to represent two data values at once.

Qubits

Quantum computers

Moore's Law

- $5+$ decades of exponential growth in computing power are drawing to a close.
- Quantum computers hold the promise of a new exponential advance over classical - Quantum computers hold the promise of
new exponential advance over classical
machines.
- Large government investments:
- UK Quantum technology hubs $£ 350 \mathrm{M}$
- European Union Quantum Flagship €1B
- China National Lab for Quantum Information \$10B
- US National Quantum Initiative \$1.25B
- Fortune 500 investments:

Google, Microsoft, IBM, Intel, Honeywell, Lockheed Martin, Raytheon,

- Startups:

DWave, Rigetti, Quantum Circuits, IonQ,
DWave, Rigetti, Quantum Circuits, Iona,
Silicon Quantum Computing, ColdQuanta,...

- $5+$ decades of exponential growth in machines.

- -2
- Startup $\rightarrow+$

 -

 -
r -

Quantum computing timeline

Early 1980s: Richard Feynman and others propose quantum computers for tackling physics problems 1994: Peter Shor discovers a fast method to factor numbers on a
quantum computer 1994: Peter Shor discovers a fast method to factor numbers on a
quantum computer \longrightarrow
\qquad \square -

-

 1994: Peter Shor discovers a fast method to factor numbers on a
quantum computer ,

$\frac{\text { Quant }}{\text { Theory }}$

(20)

$$
[
$$ —

$-$ 0
$=$ = 0^{2} $=$

Quantum: a new era in computing

Major investments on Quantum Computing research programmes from 2010 to 2016.

US National Strategy - NQI
A \$1.3B, five year investment in Quantum Information Science.

NATIONAL STRATEGIC OVERVIEW FOR QUANTUM INFORMATION SCIENCE

Quantum: a new era in computing

(intel) IBM Q 苗 (tool Ind pis rigett

Q ColdQuanta

What makes a
quantum
computer tick?

Quantum bits

Classical bits

N classical bits can store a single data value out of 2^{N} possibilities.

Qubits

N qubits can store 2^{N} different values simultaneously. 2^{100} is more than the number of particles in the universe.

Superposition and entanglement

Two qubits: $\quad|\psi\rangle_{1}=a_{0}|0\rangle+a_{1}|1\rangle, \quad|\psi\rangle_{2}=b_{0}|0\rangle+b_{1}|1\rangle$

$$
\text { Product State: } \quad \begin{aligned}
|\psi\rangle & =\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \otimes\left(b_{0}|0\rangle+b_{1}|1\rangle\right) \\
& =a_{0} b_{0}|00\rangle+a_{0} b_{1}|01\rangle+a_{1} b_{0}|10\rangle+a_{1} b_{1}|11\rangle
\end{aligned}
$$

Classically we can only store one of four states at a time in a 2 bit memory: 00 or 01 or 10 or 11
$|\psi\rangle$ encodes four different states at one time.
With N qubits we can encode 2^{N} states at one time.

Superposition and entanglement

It is also possible to create states that are not product states:

Verschränkung "entanglement"

Such a state is entangled, and cannot be described in terms of classical bits - there is no local and realistic description of entangled states, Einstein, Podolsky, Rosen 1935 (EPR paradox).

Quantum computers provide a speedup over classical machines. It is not clear exactly where the speedup comes from.
The power of quantum computers appears to be intimately related to the presence of entanglement. If there was no entanglement, we could use a classical description of the machine.

Superposition and entanglement

It is also possible to create states that are not product states:

Maximally entangled 2-qubit state "Bell" state.

Physics Vol. 1, No. 3, pp. 195-200, 1964
Physics Publishing Co.
Printed in the United States

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

J. S. BELL ${ }^{\dagger}$

Department of Physics, University of Wisconsin, Madison, Wisconsin

Classical data processing

Input data

Quantum data processing

Input data

$$
|\psi\rangle=a|00 \ldots 00\rangle+b|00 \ldots 01\rangle+c|00 \ldots 10\rangle+d|00 \ldots 11\rangle+\ldots|11 \ldots 11\rangle
$$

Output data

$$
\begin{gathered}
\text { CPU }|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=f(|\psi\rangle) \\
\left|\psi^{\prime}\right\rangle=a^{\prime}|00 \ldots 00\rangle+b^{\prime}|00 \ldots 01\rangle+c^{\prime}|00 \ldots 10\rangle+d^{\prime}|00 \ldots 11\rangle+\ldots|11 \ldots 11\rangle
\end{gathered}
$$

The results for all possible input data are computed in parallel

Running the computer

Circuit model of Quantum Computing

Arbitrary U can be decomposed into one- and two- qubit gates.

One-qubit gates

Qubit state can be parameterized by two angles on the Bloch sphere.

One-qubit gates rotate on the sphere.
X gates rotate about x
Y gates rotate about y
 Z gates rotate about z

Two-qubit gates

Two-qubit gates are required to create entanglement.

input	
$c t$	output
00	00
01	01
10	11
11	10

CNOT gate

Entanglement on demand

We can create entanglement with a simple quantum circuit.

$$
|00\rangle \underset{\mathrm{H}}{\square}(|0\rangle+i|1\rangle)|0\rangle=|00\rangle+i|10\rangle \underset{\mathrm{CNOT}}{\substack{\text { entanglement }}}
$$

Quantum Factoring algorithm

Peter Shor (1994 Bell labs)

Best known classical algorithm: time $\sim e^{\left(\log N \log ^{2} N\right)^{1 / 3}}$.

Shor's quantum algorithm:

$$
\text { time } \sim(\log N)^{3}
$$

RSA Public key cryptography

- Rivest, Shamir, Adleman (RSA) invented a public key cryptosystem in 1977.

- Independently invented by C. Cocks in England in 1973 but kept secret.
- There is a public key known to everyone and a private key.
- Messages are encrypted with the public key and broadcast.
- Only recipients who know the private key can decrypt the message.
- This is widely used to protect personal data on the internet, e.g. online shopping.
- The security of RSA relies on the difficulty of factoring large numbers.

Factoring RSA Numbers

number	decimal digits	prize	factored (references)
RSA-100	100		Apr. 1991
RSA-110	110		Apr. 1992
RSA-120	120		Jun. 1993
RSA-129	129	\$100	Apr. 1994 (Leutwyler 1994, Cipra 1995)
RSA-130	130		Apr. 10, 1996
RSA-140	140		Feb. 2, 1999 (te Riele 1999a)
RSA-150	150		Apr. 6, 2004 (Aoki 2004)
RSA-155	155		Aug. 22, 1999 (te Riele 1999b, Peterson 1999)
RSA-160	160		Apr. 1, 2003 (Bahr et al. 2003)
RSA-200	200		May 9, 2005 (see Weisstein 2005a)
RSA-576	174	\$10000	Dec. 3, 2003 (Franke 2003; see Weisstein 2003)
RSA-640	193	\$20000	Nov. 4, 2005 (see Weisstein 2005b)
RSA-704	212	withdrawn	Jul. 1, 2012 (Bai et al. 2012, Bai 2012)
RSA-768	232	withdrawn	Dec. 12, 2009 (Kleinjung 2010, Kleinjung et al. 2010)
RSA-896	270	withdrawn	
RSA-1024	309	withdrawn	
RSA-1536	463	withdrawn	
RSA-2048	617	withdrawn	

Largest number known to have been factored

RSA-768

$=1230186684530117755130494958384962720772853569595334792197322452151726400507263657518$ 74520219978646938995647494277406384592519255732630345373154826850791702612214291346167 0429214311602221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243388982883793878 002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603228381573 9666511279233373417143396810270092798736308917

Classical number field sieve algorithm

time $\sim e^{1.9(\ln n)^{1 / 3}(\ln \ln n)^{2 / 3}}$

RSA 768 took 1500 AMD64 years to

 factor.
RSA 1536 would take 200 billion AMD64

 years
Factoring algorithms

vanMeter, et al. arXiv:quant-ph/0507023

Factoring algorithms

vanMeter, et al. arXiv:quant-ph/0507023

A simpler example: Deutsch-Jozsa

Consider the following problem. The function f takes a one bit input with value 0 or 1 and maps it to a one bit output, 0 or 1 . There are four possibilities given in Table 3.1. The problem is to determine $f(0) \oplus f(1)$ which tells us whether the function is constant or balanced.

$f(0)$	$f(1)$	$f(0) \oplus f(1)$	type of function
0	0	0	constant
0	1	1	balanced
1	0	1	balanced
1	1	0	constant

Table 3.1: Truth table for a function f. We refer to $f(0)=f(1)$ as a constant function and $f(0) \neq f(1)$ as balanced.

Classically this requires two evaluations of the function f. Using a quantum circuit we need only a single evaluation.

A simpler example: Deutsch-Jozsa

Classically this requires two evaluations of the function f. Using a quantum circuit we need only a single evaluation. The function evaluation can be expressed as a unitary operator

$$
|x\rangle|y\rangle \xrightarrow{U_{f}}|x\rangle|y \oplus f(x)\rangle
$$

Different $f(x)$ correspond to different quantum circuits.

Has been demonstrated in the lab.

mount entanglement

How long is the road?

Quantum Computing Platforms

	trapped ions	neutral atoms
Atomic qubits (identical)	\%	: $:: 1:$: $:$: $:$: $:$:
Room T apparatus (or 4K)		::.:.:: :: : :
Optical interface/qu. networking		
Laser cooling and control		:::::::::
	~ 200 demonstrated	1000 arrays
	superconductors	quantum dots
Engineered qubits (not identical)		
Requires cryogenic cooling		
No optical interface		
Microwave electronics		
	600 chips	2 Q devices

optical

Scalability challenging

Classical Simulation of Quantum Circuits

Large scale classical simulators are memory or time limited.

Brute force requires exponential memory

Classical Simulation of Quantum Circuits

Can trade memory for time to simulate more qubits
arXiv:1710.05867, 1712.05384, 1707.00865, 1805.01450

Deep circuits require exponential time

Near term algorithms

- There is still a big gap between the promise of quantum computing and the reality of today's hardware.
- Sometimes referred to as the NISQ era Noisy Intermediate Scale Quantum
- A great deal of current effort on hybrid approaches: classical optimization coupled with a quantum co-processor.

VQE - Variational quantum eigensolver QAOA - Quantum Approximate Optimization Algorithm

- These approaches can be used for quantum machine learning.

Peruzzo, et al. Nat. Commun. 5, 4213 (2014)

- Quantum hardware for state preparation and measurement of observables.
- Classical processing for analysis of the quantum measurements and optimal choice of the state ansatz to find a variational optimal.

Quantum Machine Learning

Unsupervised Machine Learning on a Hybrid Quantum Computer
arXiv:1712.05771v1
J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick, M. Block, B. Bloom, S. Caldwell, N. Didier, E.

Schuyler Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papageorge, E. C. Peterson, G. Prawiroatmodjo,
N. Rubin, Colm A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P. Sivarajah, Robert S. Smith, A. Staley,
N. Tezak, W. J. Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P. da Silva, and C. Rigetti

Rigetti Computing, Inc., Berkeley, CA
(Dated: December 18, 2017)

Clustering of input data is a well known unsupervised learning task.
This can be mapped onto a combinatorial optimization problem called MaxCut.

Given a graph divide the vertices into two sets such that the number of connections between vertices in different sets is maximized.

MaxCut

Example of MaxCut for a 5 vertex graph.
For the clustering application - weighted MaxCut is used where the weight function is a distance metric between objects.

MaxCut is NP hard, but there are efficient classical heuristics.

QAOA MaxCut - 3 qubits

- QAOA for 3 node MaxCut

MaxCut solutions are 010 and 101

QAOA MaxCut - 4 qubits

- QAOA for 4 node MaxCut

MaxCut solutions are 0001 and 1110 Noise free prediction for $p=1,2,3$ is $A R=0.77,0.95, \sim 1.0$
6 CZ
12 CZ
$18 C Z$

$$
\begin{aligned}
& \mathrm{p}=1 \\
& \mathrm{AR}=0.67
\end{aligned}
$$

$$
\mathrm{p}=2
$$

$$
\mathrm{AR}=0.69
$$

$\mathrm{p}=3$
AR=0.63

Quantum Science and Engineering at UWM

(w) WISCONSIN QUANTUM INSTITUTE

Quantum Science and Engineering at UW-Madison
Chicago Quantum Exchange

D U ARF

Wisconsin Alumni Research Foundation

DARPA

Early days

Physics Vol. 1, No. 3, pp. 195-200, 1964 Physics Publishing Co. Printed in the United States

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*
J. S. BELL ${ }^{\dagger}$

Dieter van Melkebeek 2000 Computational complexity

WISCONSIN QUANTUM INSTITUTE

29 Physics, Chemistry, Computer Sciences, Electrical \& Computer Engineering, Engineering Physics, Materials Science, Mathematics, Statistics

Research portfolio

Qubits \& Quantum computing

Quantum networking

Quantum sensing \& metrology

Applications
Workforce Development

Qubit platforms

Si quantum dots

Superconducting circuits

Neutral atom arrays

Neutral atom hardware

Inside view of the "QPU" at UWM.

Includes optical components, optomechanics, beam steering, detectors, cameras, all in an enclosure with environmental stabilization.

Not shown are laser, optical, electronic, and computer subsystems that feed into the QPU.

Neutral atom approach

Qubits

DiVincenzo
Fortschr. Phys. (2000)
Qu. Inf. Comp. (2001)

- Initialization Laser cooling and trapping
- Coherence Hyperfine clock states. Coherence > 10s demonstrated
- Measurements Light scattering. High fidelity.
- Universal set of logical gates

Microwaves/laser pulses/Rydberg states

Qubit arrays demonstrated in 1D, 2D and 3D geometries.
Several groups have shown arrays with >100 qubits.

Which atom should we pick?

I				Periodic table of laser cooling													
H																H	He
Li	$\stackrel{4}{4}^{4}$											B	$\stackrel{6}{C}$	N	$\stackrel{8}{8}^{8}$	$\stackrel{9}{\mathrm{~F}}$	Ne
$\begin{aligned} & 11 \\ & \mathrm{Na} \end{aligned}$	$\begin{aligned} & 12 \\ & \mathrm{Mg} \end{aligned}$											${ }^{13}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\stackrel{15}{P}$	$\stackrel{16}{16}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	${ }^{18} \mathrm{Ar}$
	20	21	22	${ }^{23}$	24	25	${ }^{26}$	27	${ }^{28}$	${ }^{29}$	${ }^{30}$		32	${ }^{33}$	${ }^{34}$	${ }^{35}$	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	${ }^{38} \mathrm{Sr}$	${ }^{39}$	Zr^{40}	${ }^{41}$	${ }^{42}$	$\frac{43}{\mathrm{Tc}}$	$\begin{array}{\|l\|} \hline 44 \\ \mathrm{Ru} \end{array}$	Rh	${ }^{46}$	${ }^{47}$	${ }_{\text {Cd }}^{48}$	In	${ }^{50}$	${ }_{51}^{51}$	${ }_{\text {Te }}$	I	Xe
		5										\%			${ }^{84}$		
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	88 Ra	${ }^{89} \mathrm{Ac}$	${ }^{104}$	Db	${ }^{106} \mathrm{Sg}$	Bh Bh	Hs Hs	Mt Mt									

58	59	60	61	62	63	64	65	60	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Single atom arrays:

Rb, Cs,

Sr, Yb

An industry standard qubit

Cesium

- The hyperfine $m=0$ clock states provide the SI definition of the second.
- These states are entangled superpositions of nuclear and electronic spin projections

$$
\begin{aligned}
& \mid 1>=\uparrow \downarrow+\downarrow \uparrow \\
& \mid 0>=\uparrow \downarrow-\downarrow \uparrow
\end{aligned}
$$

Excellent coherence properties:

- In free space hyperfine lifetime 34 years
- When optically trapped T1, T2 up to 10s has been demonstrated

Coherence limited by finite atom temperature, trap light optical Stark shifts, magnetic fields.
Minute scale coherence appears possible.

Operational Sequence

Qubit Register Preparation

Controlling the Mechanics

Calculation Cycle

Controlling the Quantum

Blue Array Technology

- a single bottle beam
- bottle beam array
- Gaussian beam array
- line array
- dynamic line array
- Hole array
>1000 sites

Opt. Lett. 34, 1159 (2009)

SPIE 8249 (2012)

PRA 88, 013420 (2013)

PRL 123, 230501 (2019)

 a $4+4+6+4+\pi+n+3$ $4444+4+4+4+4=$

Scalable qubit registers

Dynamic line array
Up to 500 sites, currently in use.

Hole array
Scalable to $>10^{4}$ sites

Atom Rearrangement

- Loading single atoms into a trap array is a stochastic process.
- The array is deterministically filled using "atom rearrangement".
Works in 1D, 2D, 3D
KAIST, Paris, Harvard, Darmstadt, Wuhan, Moscow,

Browaeys group (2019)

Qubit measurement

Cycling
852 nm transition

histogram

Photoelectron counts
bictorem

\square n
.
$m=0$

Qubit control

－ 6 different colors
－ 13 lasers

2Q gates $\mathrm{ns}_{1 / 2} \quad \mathrm{~m}=-1 / 2 \mp+\overline{+1 / 2}$

$$
\begin{aligned}
& \varepsilon_{n}^{1} \\
& \infty \\
& \stackrel{\infty}{\circ} \\
& \stackrel{1}{2}
\end{aligned}
$$

1Q gates

$$
7 p_{1 / 2}-=======-
$$

cooling， readout
$6 \mathrm{p}_{3 / 2}$＝ミ末ミミミミミ＝
cooling， optical pumping

$$
6 p_{1 / 2}-======ー-1.2 \mathrm{GHz}
$$

Cs qubit

Microwaves 10 kHz Rabi frequency

$$
\begin{array}{ll}
\left\langle F^{2}\right\rangle_{47} \text { sites } & 0.9983 \pm 0.0014 \\
F_{\min }^{2} & 0.9939 \pm 0.0007 \\
F_{\max }^{2} & 0.9999 \pm 0.0003
\end{array}
$$

Microwaves 76 kHz Rabi frequency

Single site control

Site spacing $3 \mu \mathrm{~m}$
$\mathrm{R}_{\mathrm{x}}(\theta)$ rotation on single site

16 site addressing

Ground-Rydberg Rabi on central site: 459+ 1040 nm

Atomic interactions and Rydberg atoms

Experimental geometry

Entanglement demonstration

arXiv: 2112.14589
Fidelity $\mathrm{F}=0.955$
phase correction

Phase estimation - quantum chemistry

Summary

Quantum computing is a revolutionary approach to information processing.
There is great potential for solving hitherto intractable problems.
Quantum hardware is primitive, but under rapid development.
Hybrid approaches - classical optimizers with quantum co-processors are a near term opportunity.

WISCONSIN QUANTUM INSTITUTE
Quantum Science and Engineering at UW-Madison

